Human cortical object recognition from a visual motion flowfield.

نویسندگان

  • Nikolaus Kriegeskorte
  • Bettina Sorger
  • Marcus Naumer
  • Jens Schwarzbach
  • Erik van den Boogert
  • Walter Hussy
  • Rainer Goebel
چکیده

Moving dots can evoke a percept of the spatial structure of a three-dimensional object in the absence of other visual cues. This phenomenon, called structure from motion (SFM), suggests that the motion flowfield represented in the dorsal stream can form the basis of object recognition performed in the ventral stream. SFM processing is likely to contribute to object perception whenever there is relative motion between the observer and the object viewed. Here we investigate the motion flowfield component of object recognition with functional magnetic resonance imaging. Our SFM stimuli encoded face surfaces and random three-dimensional control shapes with matched curvature properties. We used two different types of an SFM stimulus with the dots either fixed to the surface of the object or moving on it. Despite the radically different encoding of surface structure in the two types of SFM, both elicited strong surface percepts and involved the same network of cortical regions. From early visual areas, this network extends dorsally into the human motion complex and parietal regions and ventrally into object-related cortex. The SFM stimuli elicited a face-selective response in the fusiform face area. The human motion complex appears to have a central role in SFM object recognition, not merely representing the motion flowfield but also the surface structure of the motion-defined object. The motion complex and a region in the intraparietal sulcus reflected the motion state of the SFM-implicit object, responding more strongly when the implicit object was in motion than when it was stationary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptive-field structure of optic flow responsive Purkinje cells in the vestibulocerebellum of pigeons.

Neurons sensitive to optic flow patterns have been recorded in the the olivo-vestibulocerebellar pathway and extrastriate visual cortical areas in vertebrates, and in the visual neuropile of invertebrates. The complex spike activity (CSA) of Purkinje cells in the vestibulocerebellum (VbC) responds best to patterns of optic flow that result from either self-rotation or self-translation. Previous...

متن کامل

Scale - Space Recognition Based on the Retino - Cortical Transform

Visual transformations are often employed to achieve size and rotation invariances in computational approaches to vision. Nature appears to have adopted a similar strategy: research workers studying biological vision systems have known for over a decade that a particular spatial transformation appears to be applied to the visual signals that are conveyed between the retina and the primary visua...

متن کامل

Color constancy improves, when an object moves: high-level motion influences color perception.

Color constancy refers to our remarkable ability to perceive the color of objects nearly constant despite considerable changes in the spectral content of the illumination. As such it is most important for object recognition. Visual motion can make object recognition harder because it limits the viewing time and increases the likelihood that an object encounters illumination changes. However, co...

متن کامل

Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe

The extent to which primary visual cues such as motion or luminance are segregated in different cortical areas is a subject of controversy. To address this issue, we examined cortical activation in the human occipital lobe using functional magnetic resonance imaging (fMRI) while subjects performed a fixed visual task, object recognition, using three different primary visual cues: motion, textur...

متن کامل

Invariant Global Motion Recognition in the Dorsal Visual System: A Unifying Theory

The motion of an object (such as a wheel rotating) is seen as consistent independent of its position and size on the retina. Neurons in higher cortical visual areas respond to these global motion stimuli invariantly, but neurons in early cortical areas with small receptive fields cannot represent this motion, not only because of the aperture problem but also because they do not have invariant r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2003